Wednesday, March 6, 2019

Basic Concepts of Artificial Intelligence, Machine Learning, Deep Learning


Today we will start our journey to the world of Artificial Intelligence(AI). We will learn the basic definition of Artificial Intelligence (AI), Machine Learning(ML), Deep Learning(DL), Natural Language Processing(NLP), Computer Vision and Image Processing. Later we will go deeper with the machine learning algorithms and how those algorithm works. This tutorial is for beginners, if you have an idea of AI skip this course and go to the next lesson where I will discuss different Machine Learning algorithms.


What is Artificial Intelligence(AI)?
-          Artificial intelligence (AI) is the ability of a machine or a computer program to think and learn by doing certain task. The concept of AI is based on the idea of building machines capable of thinking, acting, and learning like humans. On other words the creating the machine capable of understanding the environment, understanding the problem and act intelligently according to the situation.

What is Machine Learning(ML)?
-          Machine Learning(ML) is an application of AI that provides system the ability to automatically learn and improve performance without being explicitly programmed. ML focuses on the development of computer program that can access data and learn for themselves. The main aim is to allow computer learn automatically without human intervention or assistance and act accordingly.
-          Next question in your mind may have, how the machine is learning? –  The answer is as human learns. Frist the machine gathers information and knowledge then use those knowledge to take decisions. Also, past experiences helps to take decisions in future.

What is Deep Learning(DL) or Deep Neural Network(DNN)?
-          Deep Learning(DL) is part of a broader family of Machine Learning and AI, which emulate the learning approach that human beings use to gain certain types of knowledge. Traditionally machine learning algorithms used to be linear, but with deep learning algorithms are stacked in a hierarchy of increasing complexity and abstraction. Because this process mimics a system of human neurons, deep learning is sometimes referred to as Deep Neural Learning(DNN) or deep neural networking. Let me explain the concept with an example blow-
-          A baby when starts learning about what a cat is (and is not) by pointing to some objects and saying the word cat. The parent guides him by saying, "Yes, that is a cat," or, "No, that is not a cat." As the baby continues to point to objects, he becomes more aware of the features that all cat have. What the baby does, without knowing it, is clarify a complex abstraction by building a hierarchy in which each level of abstraction is created with knowledge that was gained from the preceding layer of the hierarchy. A machine follows more or less similar approach. Each algorithm in the hierarchy applies a nonlinear transformation on its input and uses what it learns to create a statistical model as output. Iterations continue until the output has reached an acceptable level of accuracy. The number of processing layers through which data must pass is what inspired the label deep.


What is Natural Language Processing(NLP)?
-          Natural Language Processing is the ability of a computer program to understand human languages as it is spoken. NLP is also component of AI. The development of NLP is challenging because traditionally computer requires human to speak to them in a programming language or unambiguous or highly structured, clear commands. Whereas natural languages are generally ambiguous, have different structures, dialects, regional effects which are difficult to distinguish.
-          Semantic analysis and Natural Language Processing can help machines automatically understand text, which supports the even larger goal of translating information, understanding potentially valuable piece of customer feedback, understanding insight in a tweet or in a customer service log into the realm of business intelligence for customer support, corporate intelligence or knowledge management.

What is Computer Vision and Image Processing?
-          Computer vision is about granting the computer the ability to ‘see’ and ‘understand’ what it sees. In image processing you get an image as input and provide processed image as output, whereas in computer vision you get an image (or video) as input and provide other quantitative data as an output (e.g geometrical information about the objects in question). Computer Vision tries to do what a human brain does with the retinal input, it includes understanding and predicting, detecting certain things. For example, given an input image, using computer vision the computer can classify the objects (cars,humans,train.. etc) as human does. There are many other applications but this is just to give you a basic idea.

  This was the basic concepts. Please comment below if you have any questions or feedback. Stay tuned for more detailed concepts of Machine Learning Algorithms.

Next topic is Supervised, Un-Supervised, Semi-Supervised machine and Reinforcement Learning algorithms



12 comments:

  1. Well done for keeping it simple and easily understandable.

    ReplyDelete
  2. Very nice! Thanks for sharing .. crisp. Will wait for the next one

    ReplyDelete
    Replies
    1. Thank you. Next one is up now, do let me know your valuable feedback.

      Delete
  3. Mehebuba, very nice introduction. In the next episode on ML, please bring some basics of statistics along with various algorithm. It will be brilliant to talk through some examples.
    Well done. Please keep this up!

    ReplyDelete
    Replies
    1. Thank you for your valuable feedback. Next post is up now, do let me know your feedback

      Delete
  4. Thank you so much for these information . Good to see another ai blogger here . Keep it up from Quora Gaffer

    ReplyDelete
  5. Excellent information. My Institute want to start AI course for beginners. They asked me to give them basic info on AI. I am sure info given in your article serve the purpose.

    ReplyDelete
  6. Indeed, a very helpful blog made....
    Thanking you...

    ReplyDelete
    Replies
    1. Thank you for your feedback.. Stay connected for new posts.

      Delete